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Plants of the family Annonaceae produce an abundant collection

of highly bioactive C35-C37 fatty acid metabolitesThese aceto- CHa(CHg)1g —
genins have been found to effect potent depletion of ATP levels
via inhibition of complex | (NADH, ubiquinone oxidoreductase) o}

of mammalian and insect mitochondrial transport systems and in- ¢y, cHy) 7 >~
hibition of the NADH oxidase of plasma membranes of tumor éells. momo " 3
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Consequently, they disrupt ATP-driven resistance mechanisms and ﬂ MOMO |, 2 Me
have shown activity against multidrug-resistant tumor tyjp€ke nC1szsy%H i ~° 1 oBn
three main classes of annonaceous acetogenins are monotetrahy- momo Mo =
drofuran, adjacent bis-THF, and nonadjacent bis-THF subclasses. “Figure 1. Retros;’mheSIS of)- glgamecm
The significant biological activity of the acetogenins, as well as
their interesting and diverse structures, has stimulated substantialScheme 1. Synthesis of Butenolide 22
interest in their chemical synthedi§igantecin 1), a representative o o
nonadjacent bis-THF acetogenin, was isolated from the bark of OXN/”\/OPMB )L )J e
Goniothalamus giganteuis Southeast Asfaand the seed of the ), I/WTBF —/  opmB
Brazilian plantAnnona coriaced The relative and absolute con- 6 M ’ g Moz
figurations of gigantecin were assigned after extensive spectroscopic Br de TBDPSO/\»/%O f
and Mosher ester analysis, and the assignment was confirmed by TBDPSim Ve PMBG
single-crystal X-ray analysfs® Gigantecin displayed potent cyto- 9 Ho/:\/ koe
toxicity against A-549 (lung carcinoma), HT-29 (colon adenocar-
cinoma), MCF-7 (breast adenocarcinoma), and U251MG (glioblas- o
toma multiforme) human tumor cell lines at E of 0.4, 0.001, PM m
4.3, and 0.003(g/mL, respectively.
Herein we disclose the first total synthesis ef){gigantecir. 9[,12R LPoFs

The synthesis exploits a modified asymmetric aldol protocol using _ 2 Conditions: (a) NaN(SiMg,, THF, =78 to —45 °C, iodide7, 71%; (b) NaBH,
o . . F, H,0, 92%; (c) TBDPSCI, imidazole, Gi&l,, 72%; (d)t-BuLi, THF, —78 °C;
chlorotitanium enolates of oxazolidinone glycolates. Strategically, co, 82%: (e) DEAD, PP, THF, alcohol10, 87%; (f) Ch(CysP)(IMes)Ru=CHPh,

i i i ; CH,Cl,, 40°C, 95%;@) 3HF-EtN, CHiCN, 94%; (h) (COCl, DMSO, E§N, CH,Cly,
gigantecin was env!5|on§d to derive from a convergent assemblywo%; a) CHL, Crcolz, THE. 620 (twoasteps)_ o 2Ll
of three key subunits (Figure 1). The confluence of acetykene
and aldehyd® according to Carreira®amethod would join the two Scheme 2. Synthesis of C9—C16 Fragment 42

tetrahydrofuran rings and establish the C17 stereocenter. Conversion o Bn _ )
of the acetylide adduct to acetyleBavould set the stage for its J> a4\ . LOBn 7 .
coupling to butenolide2 leading to completion of the synthesis. Bno” 14 l’/ \(‘3(\ H TIPS

Both acetylenel and aldehyd® would be accessible by applying

. . . . OBn MOMO OBn
an asymmetric glycolate aldeting-closing metathesis sequence.
The C1-C6 butenolide2 was constructed as shown in Scheme 1. TIPS/\A[ L Tlps/j/ \L
Alkylation of the sodium enolate of oxazolidinone glycoléterith HO™ g
allylic iodide 7 proceeded in good vyield (71%) and excellent MoMO |, MOMO
diastereoselectivityX98:2)1° The chiral auxiliary was reductively /j \1\ _ /\@fOBn
cleaved, and the ensuing primary alcohol was protected as its TIPS
TBDPS ether to deliver vinyl bromide. Lithium—halogen j 22F* TIPS

exchange of bromid@ and reaction with C@produced the acrylic a Conditions: (a) MgSI, n-BuLi, THF, —10 to 25°C, 99%* (b) NaH, BICHCO,H,
i i i i i i THF, 98%; (c) MgCCOCI, EgN, THF, —78 to 0°C; (R)-lithio-4-benzyl-oxazolidin-

acid derivative, Wh,ICh Cleanly ga}\(e es“?]' upon inversion of 2-one, 78%; (d) TiC}, i-PrLNEt, N-methyl-2-pyrrolidinone, aldehydgs, CH,Cl,, —78

alcohol 10 under Mitsunobu conditions. Diene 11 was exposed to —40°C, 93%; () MeOCHLCI, i-PrLNEt, CH,Cl,, DMAP, 91%; (f) LiBH,, MeOH,

. ; ; Et0, 0°C, 92%; (g) (COCH, DMSO, EtN, CH,Cly; (h) PRP=CH,, THF, 91%, two
to the Grubbs second-generation catadfysi produce butenolide steps: (i) CHCy:P)(IMes)RU=CHPh, CHCly, 40 °C. 99%: () n-BUNF, THF., 98%.

12in 95% yield. Removal of the silyl ether 2 furnished primary

alcohol13. Alcohol 13 was oxidized to aldehyde, which underwent prepared in three straightforward steps fro8tenzyl glycidyl

Takai olefinatiod to give the required vinyl iodid@. etherl4 as shown in Scheme 2. GlycoldtBwas treated with TiG|
The syntheses of both the €216 alkyne4 and the C17C34 (1.05 equiv) and-Pr.NEt (2.5 equiv) fo 1 h at—78 °C followed

aldehyde5 were predicated on the implementation of a newly by N-methyl-2-pyrrolidinone (1.0 equiv) at78 °C for 10 min.

developed protocol for asymmetric aldol reactions of complex Aldehyde 16 was added to the enolate followed by warming to

glycolyl oxazolidinone chlorotitanium enolat&sGlycolatel5was —40°C. This procedure resulted in a highly diastereoselective aldol
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Scheme 3. Synthesis of C17—C34 Fragment 52 Scheme 4. Synthesis of (+)-Gigantecin?
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aConditions: (a) TiC}, i-PrNEt, N-methyl-2-pyrrolidinone, tridecanal, GBl,,
—781t0—40°C, 74%; (b) MeOCHCI, i-PrL,NEt, CH,Cl,, DMAP, 91%; (C) LiBH,,
MeOH, EtO, 0 °C, 95%; (d) (COCh, DMSO, E&N, CH,Cl,; (e) PRP=CH,,
THF, 90%, two steps; (f) GICysP)(IMes)Ru=CHPh, CHCly, 40°C, 99%; (g)
H,, Pd/C, EtOH, 83%; (h) (COG}) DMSO, EgN, CH,Cl,.

2 Conditions: (a) Zn(OT#H, (—)-N-methylephedrine, PhC4 then5, 70% for

. . . . . two steps fron26; (b) MeOCHCI, i-PLNEL, CHCl,, DMAP, 97%; , Pd/C,

reaction to deliver the alcoh@l7 in 93% yield and>20:1 dr (major: Et%ﬁ,egio/!? (d) T(ﬁ(%, IS@N, %Hzélz r378 °C;er)2MQSiC,ECH,On-(|§LIL—i&, THF,

H ; i HMPA, —78 °C; MeOH, 25°C, 95% for two steps; (f) iodide, Pd(PPB)4, Cul,

all other |somers).. Protection of the seco.r.1dary alcohol as its MOM -PENEL, THF, 64%: (g) H. Rh(PPR)SCl, Coble, ETOH, Lil 61%6: () BR-OFb
ether and reductive removal of the auxiliary afforded the alcohol Me;S, 0°C, 71%.

18. The primary alcohol8 was oxidized under Swern conditiots,

and the aldehyde was immediately converted to the alkeéhe

Exposure Of_ diend9 t9 the GrprS second-gem_aratiqn CatéWSt The first total synthesis of the annonaceous acetogef)n (

led to selective formation of the dihydrofur@@in high yield with gigantecin has been completed in an enantioselective manner in

no indication of reaction of the acetylene. The terminal TIPS group 19 |inear steps from commercially available benzyl glycidyl ether.
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